Characterization of a cGMP-response element in the guanylyl cyclase/natriuretic peptide receptor A gene promoter.

نویسندگان

  • David Hum
  • Sandrine Besnard
  • Rocio Sanchez
  • Dominic Devost
  • Francis Gossard
  • Pavel Hamet
  • Johanne Tremblay
چکیده

Previous studies have shown that atrial natriuretic peptide (ANP) can inhibit transcription of its receptor, guanylyl cyclase A, by a mechanism dependent on cGMP and have suggested the presence of a putative cGMP-response element (cGMP-RE) in the Npr1 gene promoter. To localize and characterize the putative cis-acting element, we have subcloned a 1520-bp fragment of the rat Npr1 promoter in an expression vector containing the luciferase reporter gene. Several fragments, generated by exonuclease III-directed deletions, were transiently transfected into cells to measure their promoter activity. Deletion from -1520 to -1396 of a 1520-bp-long Npr1 promoter led to a 5-fold increase in luciferase activity. Subsequent deletion to the position -1307 resulted in a decrease of luciferase activity by 90%. Preincubation of cells with 100 nM of ANP or 100 microM 8-bromo-cGMP inhibited luciferase activity of the 1520-bp and 1396-bp-long fragments, but not the activity of the 1307-bp fragment, suggesting that the cGMP-RE is localized between positions -1396 and -1307. The cGMP regulatory region was narrowed by gel shift assays and footprinting to position -1372 to -1354 from the transcription start site of Npr1 and indicated its interaction with transcriptional factor(s). Cross-competition experiments with mutated oligonucleotides led to the definition of a consensus sequence (-1372 AaAtRKaNTTCaAcAKTY -1354) for the novel cGMP-RE, which is conserved in the human (75% identity) and mouse (95% identity) Npr1 promoters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C

Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPR...

متن کامل

Ligand-dependent regulation of NPR-A gene expression in inner medullary collecting duct cells.

Atrial natriuretic peptide (ANP) interacts with high-affinity, guanylyl cyclase-linked receptors in the inner medullary collecting duct (IMCD), where it exerts important regulatory control over sodium handling. We sought to determine whether receptor activity in these cells would be modulated (downregulated) by prolonged exposure to ligand. A number of natriuretic peptides (ANP, brain natriuret...

متن کامل

Molecular biology of natriuretic peptides and nitric oxide synthases.

Natriuretic peptides and nitric oxide play important roles in cardiovascular and renal physiology and disease. The natriuretic peptides - atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide - comprise a family of proteins that participate in the integrated control of intravascular volume and arterial blood pressure. The natriuretic peptides differentially bind ...

متن کامل

Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes.

In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to...

متن کامل

Interactive roles of Ets-1, Sp1, and acetylated histones in the retinoic acid-dependent activation of guanylyl cyclase/atrial natriuretic peptide receptor-A gene transcription.

Cardiac hormones atrial and brain natriuretic peptides activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which plays a critical role in reduction of blood pressure and blood volume. Currently, the mechanisms responsible for regulating the Npr1 gene (coding for GC-A/NPRA) transcription are not well understood. The present study was conducted to examine the interactive roles o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hypertension

دوره 43 6  شماره 

صفحات  -

تاریخ انتشار 2004